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Abstract

We examine RR interval (RRI) correlations in subjects
with obstructive sleep apnea (OSA) and congestive heart
failure (CHF), aiming to identify nonlinear heart rate (HR)
variability (HRV) features that distinguish these condi-
tions. Healthy controls serve as a baseline. While HRV
changes are known in both pathologies, direct compar-
isons remain limited, especially regarding new nonlinear
measures.

Nighttime ECG recordings from Holter and polysomnog-
raphy are analyzed for three groups: healthy (N=90), OSA
(N=41), and CHF (N=42). We apply second-order scale-
dependent detrended fluctuation analysis (sDFA) to extract
scaling exponents α(s) and scale-to-scale changes. Clas-
sification is performed using random forest and compared
to a combined classifier using conventional HRV metrics.

The sDFA method reveals significant group differences:
CHF shows decreased α at short scales, while OSA ex-
hibits elevated α at scales 20–30. Despite individual vari-
ability, group-level trends are clear. Classification using
sDFA alone achieved a balanced accuracy of 72%, outper-
forming the combined conventional HRV metrics (RMSSD,
LF/HF, and SD1/SD2) and mean RR at 69%. When both
feature sets were combined, the balanced accuracy im-
proved to 75%. These findings highlight sDFA’s potential
for enhancing the diagnostic sensitivity of HRV analysis.

1. Introduction

Obstructive sleep apnea (OSA) and congestive heart
failure (CHF) are two prevalent and serious medical condi-
tions that significantly impact cardiovascular health. OSA
is characterized by repeated episodes of partial or complete
obstruction of the upper airway during sleep, leading to in-
termittent hypoxia and fragmented sleep [1]. CHF, on the
other hand, is a chronic condition in which the heart fails
to pump enough blood, often due to myocardial infarction,
hypertension, or cardiomyopathy [2].

Heart rate (HR) variability (HRV), the variation in time
between consecutive heartbeats, is a key marker of auto-
nomic function and cardiovascular health [3]. In OSA,
the intermittent hypoxia and arousals from sleep lead to

increased sympathetic activity and reduced parasympa-
thetic activity, resulting in changed HRV [4]. Specifically,
measures such as the standard deviation of NN intervals
(SDNN) and the root mean square of successive differ-
ences (RMSSD) are often reduced in OSA patients [5].
Similarly, CHF is associated with autonomic imbalance,
characterized by heightened sympathetic activity and di-
minished parasympathetic tone, which also leads to de-
creased HRV parameters, particularly in measures like the
low-frequency to high-frequency (LF/HF) ratio [6].

Here, we focus on an extension of detrended fluc-
tuation analysis (DFA) [7], called scale-dependent DFA
(sDFA) [8, 9]. By computing the mean fluctuations F (s)
around the local polynomial trends at multiple scales s,
DFA is applied to assess the power-law scaling F (s) ∝ sα

characterized by a scaling exponent α [10, 11]. Building
on our previous work that investigated the impact of OSA
on the DFA scaling exponent [12], we now extend this ap-
proach to study CHF. Specifically, we analyze night-time
electrocardiogram (ECG) recordings to characterize both
OSA and CHF, focusing on RR interval correlations across
scales to reveal underlying pathophysiological patterns.

2. Data and preprocessing

We utilize five databases from Physionet [13]: Healthy
controls from both MIT-BIH Normal Sinus Rhythm
Database [14] and Normal Sinus Rhythm RR Interval
Database [15], CHF patients from BIDMC Congestive
Heart Failure Database [16] and Congestive Heart Failure
RR Interval Database [17] and extra healthy controls and
OSA patients from the Physionet Apnea-ECG database
[18]. We focused on sleep periods because signal qual-
ity is typically higher and apnea events are more easily
detectable during this time. For the healthy and CHF
databases, we approximated sleep by identifying the con-
tinuous 7-hour segment with the lowest average HR. Al-
though this approach does not perfectly correspond to ac-
tual sleep, it represents the closest approximation achiev-
able with these datasets, even if it is not exactly consistent
with the apnea database recordings.

Table 1 shows the sex and age distributions of the sub-
jects in different datasets. Note that the OSA and CHF
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Table 1. Basic characteristics of the study groups. N is
shown for males (m) and females (f); other values are mean
± standard deviation. *18 CHF subjects with unknown
sex.

Healthy Apnea CHF
N (m/f) 90 (46/44) 41(40/1) 42(19/5)*
age (years) 50± 17 51± 7 55± 12

populations are male driven, whereas the healthy control
population is more balanced. Also despite the age ranges
being somewhat similar there are big differences inside the
healthy group between different databases. CHF patients
include all the NYHA classes I-IV, however most of the
patients are from classes III-IV. Similarly the OSA patients
have relatively severe conditions with mean AHI index of
(42± 22).

Based on previous studies, RR interval (RRI) data qual-
ity was assessed using the automatic filtering algorithm,
which removes outlier RRIs from the time series. As
the recordings in this study were obtained during continu-
ous nighttime recordings outliers and low-quality samples
could still occur due to various physiological or technical
factors. To ensure data consistency, we applied median-
based filtering and discarded outlier RRIs, following the
procedure described in our earlier work [19]. Subjects with
more than 10% of intervals removed were excluded, elim-
inating 4 OSA, 7 healthy, and 2 CHF cases.

3. Methods

Conventionally, DFA algorithm yields two scaling expo-
nents, α1 (scales 4-16) and α2 (scales 16-64). Here, we uti-
lize the sDFA, with which we can evaluate the spectrum of
scaling exponents α(s) over a larger and continuous range
of scales. Since the RRI time series can exhibit various
phenomena outside of the conventional scale ranges cap-
tured by α1 and α2 it is important to be able to analyze
the whole spectrum of scales to study the characteristics
of different conditions, here OSA and CHF compared to
healthy subjects. We utilize second-order polynomial fit-
ting in all the calculations of detrended variances of sDFA.
To achieve the α(s) distribution, we calculate the scaling
exponents as a function of scale over the whole record-
ings [8, 9]. Additionally, we calculated the difference in α
between subsequent scales as extra features describing the
changes in the scaling exponent.

For comparison, we also compute other conventional
HRV measures: mean RR interval duration (Mean RR) and
the root mean square of successive differences (RMSSD)
from the time domain, Poincaré plot indices SD1/SD2),
and frequency domain high- (HF) and low-frequency
power (LF) for the LF/HF ratio. For the frequency do-

main analysis, the time series are detrended using smooth-
ness priors method (with the smoothing parameter λ =
300) [20] and transformed into frequency domain with
Lomb–Scargle periodogram [21].

The classification task was performed using random for-
est algorithm. Model hyperparameters were optimized
through an exhaustive grid search, with performance eval-
uated using a nested cross-validation strategy. The outer
loop employed a 10-fold cross-validation to estimate gen-
eralization performance, while the inner loop conducted
hyperparameter tuning within each training fold. This ap-
proach provides an unbiased assessment of model perfor-
mance, reduces the risk of overfitting, and minimizes bias
from randomly chosen test sets, which is a critical factor
with such a small dataset.

4. Results and discussion

The sDFA scaling exponent, α(s), demonstrated signif-
icant group-wise differences across the examined popula-
tions (Fig. 1). In particular, patients with CHF exhibited
markedly lower α values at the shortest scales, indicat-
ing reduced complexity in HR dynamics [19]. Conversely,
individuals with OSA showed elevated α values at inter-
mediate scales (20–30 RR intervals) [12], suggesting al-
tered autonomic regulation compared to healthy controls.
Despite substantial individual variability, the group-level
trends were significant.

Importantly, this scale-dependent analysis highlights
that the conventional division of α into short (4–16) and
long (16–64) scales may not be optimal for distinguishing
between all disease states. The continuous scale-wise ap-
proach employed here provides superior resolution, cap-
turing nuanced differences in autonomic dynamics that
are otherwise obscured by fixed-scale averaging. This
methodological refinement enhances the diagnostic sensi-
tivity of sDFA, particularly in differentiating between OSA
and CHF.

Table 2 summarizes HRV metrics across healthy con-
trols, apnea subjects, and CHF patients. Mean RR in-
tervals decrease progressively from healthy to CHF, re-
flecting increased HRs in pathological groups. Although
RMSSD appears similar between healthy and CHF sub-
jects, this is misleading due to its inverse relationship with
HR—suggesting reduced vagal activity in CHF when nor-
malized.

Apnea subjects show elevated LF/HF ratios, consistent
with increased sympathetic activity driven by disrupted
breathing. The SD1/SD2 ratio remains relatively stable
in apnea, indicating preserved variability structure, while
CHF shows a marked increase, possibly reflecting altered
autonomic dynamics. Notably, sDFA-2 values at scale 20
diverge significantly: apnea subjects exhibit higher long-
range correlations, while CHF patients show reduced com-
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Figure 1. Scale-dependent detrended fluctuation analysis
(DFA)-2 scaling exponent α(s) across RR interval scales
for healthy, apnea, and CHF subjects. The continuous
profile reveals distinct autonomic patterns across groups.
Darker shaded regions represent 95% confidence intervals,
while the lighter shaded areas show the standard deviation.

Table 2. HRV measures for healthy controls and apnea
subjects as mean ± standard deviation.

Healthy Apnea CHF
Mean RR 951 ± 103 868 ± 90 754 ± 124
RMSSD 46 ± 27 33 ± 17 45 ± 29
LF/HF 235 ± 163 441 ± 198 290 ± 141
SD1/SD2 0.25 ± 0.12 0.19 ± 0.05 0.44 ± 0.24

sDFA-2
(scale=20) 1.18 ± 0.25 1.59 ± 0.22 0.82 ± 0.36

plexity compared to healthy controls.
Classification performance based on conventional HRV

measures is presented in Fig. 2(a), while results for the
sDFA-based classifier are shown in Fig. 2(b). The com-
bined classifier incorporating all features is illustrated in
Fig. 2(c). For the sDFA classifier, the highest classification
accuracy was observed in the healthy group (82%± 0.09),
followed by the OSA and CHF groups with accuracies of
71% and 63% (±21% and ±9%), respectively. The low-
est misclassification rates were found in the healthy group,
with only 14% and 4% of subjects incorrectly labeled as
OSA or CHF, respectively. In contrast, 28% of OSA sub-
jects were misclassified as healthy, and 31% of CHF sub-
jects were incorrectly labeled as healthy.

Compared to the classifier based on a combination of
conventional HRV features (Fig. 2(a)), the classifier us-
ing only sDFA achieved superior performance, with a bal-

anced accuracy of 72% versus 69%. However, the con-
ventional HRV features yielded better classification for the
CHF group, with an accuracy of 69% compared to 63%,
likely due to differences in mean HR across groups.

The combined classifier with both feature sets (conven-
tional HRV and sDFA) achieved a balanced accuracy of
75%, with the highest individual group accuracies for CHF
(75%) and healthy subjects (93%). However, the clas-
sification performance for the OSA group decreased to
57%, compared to 71% with the sDFA classifier alone.
The most influential features in the combined model were
LF/HF ratio, sDFA at scale 8, and mean RR interval. Mean
RR was particularly effective in identifying CHF cases,
while sDFA and LF/HF were more discriminative for dis-
tinguishing OSA from healthy controls. Additional fea-
tures capturing variations in the scaling exponent α also
contributed meaningfully to the classification.

5. Conclusions

Overall, these findings underscore the potential of the
scale-dependent DFA-2 method as a sensitive biomarker
for differentiating autonomic regulation patterns among
healthy individuals, OSA patients, and those with CHF,
offering promising implications for early diagnostic appli-
cations. In particular, the method demonstrated improved
discrimination in this multi-class classification task, par-
ticularly in capturing nuanced autonomic patterns. How-
ever, classification remains imperfect due to factors such as
night-time definitions, and demographic variability. Future
work should explore mixed pathologies (e.g., CHF with
apnea), as such cases may confound classifiers and appear
deceptively healthy.
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